Final Year Projects Handbook

(An easy guide to understanding projects)

You learn more quickly under the guidance of experienced teachers. You waste a lot of time going down blind alleys if you have no one to lead you.

- W. Somerset Maugham

Electrical, Electronics, Instrumentation & Communication

80/33, First Floor, Cherran Towers, Near KG Theatre, Arts College Road, Coimbatore - 18
About CodeBytes

CodeBytes is the profit based Research & Development Company, catering to the
development and research for wide range of computational applications in the field of business
solutions, embedded developments, technology developments, entertainment software, retail
and transport, construction, telecom & satellite. Having an experienced manpower, who have
an expertise in respective fields, CodeBytes provides the consultancy in technology based
solutions in order to achieve automated, unbiased, reliable processes.

Academic Project Consultancy

CodeBytes offers consultancy in academic projects for the advanced topics. Research and
industrial projects available for B.E., B.Tech, M.E., M.Tech, Ph.D, M.Phil, MSc, MCA, BSc
and Polytechnic students of Computer, Electrical, Electronics, IT, Telecom, Instrumentation
branches. Some of the areas in which we provide projects are:

* Image Processing & computer vision
* Multimedia Codec, Processing & Transmission
* Neural Network, Fuzzy Logic, AI and GA
* Web-Technology
* Embedded applications: VLSI, RTOS, DSP Processor
* Network and Security, Sensor Network, Ad-hoc Network
* Communication and Wireless Technologies
* Instrumentation, Virtual Instrumentation & Data Acquisition
* Digital Signal Processing, Speech Coding and Recognition
* Data Warehousing and Data Mining
* Hardware, Firmware, PCB based Implementation
* Electrical & Power Electronics
* Robotics and Imaging
* Java Technologies (J2SE, J2EE, J2ME, AJAX, JSP, Servlets, etc)
* VLSI, VHDL, NS2, RTOS
* VC++, COM, DCOM
* VB, .NET, C#.NET, ASP.NET

We provide implementation of research papers from reputed journals and
conference proceedings like IEEE, EURASIP, IEE etc.
<table>
<thead>
<tr>
<th>CODE</th>
<th>IEEE TRANSACTION POWER SYSTEM</th>
<th>YEAR</th>
<th>CODE</th>
<th>IEEE TRANSACTION POWER SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>E09PS01</td>
<td>Fault-tolerant configuration of distributed discrete controllers</td>
<td></td>
<td>E09PS32</td>
<td>Research on technique of real-time communication between programmable logic</td>
</tr>
<tr>
<td>E09PS02</td>
<td>Development of data acquisition and load control</td>
<td></td>
<td>E09PS33</td>
<td>ASPECT: industrial self-tuning nonlinear controller on a PLC</td>
</tr>
<tr>
<td>E09PS03</td>
<td>Load Modeling During Asymmetric Disturbance in a Metropolitan Power Grid</td>
<td></td>
<td>E09PS34</td>
<td>Web-based simulations and intelligent tutoring system for programmable logic controller</td>
</tr>
<tr>
<td>E09PS04</td>
<td>Simulation of Optimal Medium-Term Hydro-Thermal System Operation by Grid Computing</td>
<td></td>
<td>E09PS35</td>
<td>Fault-tolerant configuration of distributed discrete controllers</td>
</tr>
<tr>
<td>E09PS05</td>
<td>Real-Time Simulation of a Wind Energy System Based on the Doubly-Fed Induction Generator</td>
<td></td>
<td>E09PS36</td>
<td>Web-based programmable logic controller learning system IEE</td>
</tr>
<tr>
<td>E09PS06</td>
<td>Enhanced Fault Ride-Through Method for Wind Farms Connected to the Grid Through VSC:</td>
<td></td>
<td>E09PS37</td>
<td>Knowledge representation for Petri net based PLC stage program of discrete-event control</td>
</tr>
<tr>
<td>E09PS07</td>
<td>A Web-Based Remote Access Laboratory Using SCADA</td>
<td></td>
<td>E09PS38</td>
<td>Real time connection of programmable logic controllers to Excel spreadsheets</td>
</tr>
<tr>
<td>E09PS08</td>
<td>Detecting Chains of Vulnerabilities in Industrial Networks</td>
<td></td>
<td>E09PS39</td>
<td>Avoiding pitfalls in applying programmable logic controllers in substation applications</td>
</tr>
<tr>
<td>E09PS09</td>
<td>Institute for Advanced Technology's Small-Caliber Launcher Automated Control System</td>
<td></td>
<td>E09PS40</td>
<td>Specification, design, and implementation of logic controllers based on colored Petri net</td>
</tr>
<tr>
<td>E09PS10</td>
<td>Modeling of a Ladder Logic Processor for High Performance Programmable Logic Controller</td>
<td></td>
<td>E09PS41</td>
<td>Development of data acquisition and load control system by programmable logic controller for high</td>
</tr>
<tr>
<td>E09PS11</td>
<td>Formal Specification and Code Generation of Programmable Logic Controllers</td>
<td></td>
<td>E09PS42</td>
<td>Use of a programmable logic controller (PLC) for temperature, position, velocity and pressure</td>
</tr>
<tr>
<td>E09PS12</td>
<td>Fault Detection and Protection of Induction Motors Using Sensors Sept</td>
<td>IEEE 2008</td>
<td>E09PS43</td>
<td>PLC-based interlock system for superconducting magnets</td>
</tr>
<tr>
<td>E09PS13</td>
<td>Weighing Control of Alloy Metal for Electric Arc Furnace by Fuzzy System</td>
<td></td>
<td>E09PS44</td>
<td>Fuzzy Petri net-based programmable logic controller</td>
</tr>
<tr>
<td>E09PS14</td>
<td>No autonomous Elementary Net Systems and Their Application to Programmable Logic Control</td>
<td></td>
<td>E09PS45</td>
<td>Pipelines, programmable logic controllers, and safety</td>
</tr>
<tr>
<td>E09PS15</td>
<td>Real time mailbox alert system via SMS or email</td>
<td>IEEE 2007</td>
<td>E09PS46</td>
<td>A new architecture for high-performance programmable logic controller</td>
</tr>
<tr>
<td>E09PS16</td>
<td>Implementation of a Web-Based Real-Time Monitoring and Control System for a Hybrid Wind-</td>
<td></td>
<td>E09PS47</td>
<td>Scheduling algorithm for programmable logic controllers with remote I/Os</td>
</tr>
<tr>
<td>E09PS17</td>
<td>Discrete-time PID Controller Design in Programmable Logical Controllers</td>
<td></td>
<td>E09PS48</td>
<td>Programmable logic controller applied in steam generators water levels</td>
</tr>
<tr>
<td>E09PS18</td>
<td>Vertical Distribution of the Modular Local Control Structure using Industrial Ethernet</td>
<td>IEEE 2006</td>
<td>E09PS49</td>
<td>Implementation of fail - safe control systems using programmable logic controllers</td>
</tr>
<tr>
<td>E09PS19</td>
<td>Synchronous Compensators: Models Verified by Tests of Automatic Voltage Regulator, Reactive</td>
<td></td>
<td>E09PS50</td>
<td>Condition monitoring of sequential fluid power systems using programmable logic controllers</td>
</tr>
<tr>
<td>E09PS20</td>
<td>A distance PLC programming course employing a remote laboratory based on a flexible</td>
<td></td>
<td>E09PS51</td>
<td>PLC and SCADA - a water industry experience</td>
</tr>
<tr>
<td>E09PS21</td>
<td>Design of Wind Turbine Generator Control System</td>
<td></td>
<td>E09PS52</td>
<td>Application of programmable logic controllers to substation control and protection</td>
</tr>
<tr>
<td>E09PS22</td>
<td>Programmable Logic Controller System for Controlling and Monitoring Home Application</td>
<td></td>
<td>E09PS53</td>
<td>Safety assurance in process control</td>
</tr>
<tr>
<td>E09PS23</td>
<td>Reliability modeling strategy of an industrial system</td>
<td></td>
<td>E09PS54</td>
<td>Control of tap change under load transformers through the use of programmable logic</td>
</tr>
<tr>
<td>E09PS24</td>
<td>Increasing the Flexibility and Intelligence of Material Handling through the Factory by</td>
<td>IEEE 2005</td>
<td>E09PS55</td>
<td>Interfacing programmable logic controllers to electrical distribution monitoring systems</td>
</tr>
<tr>
<td>E09PS25</td>
<td>Diagnosis and debugging of programmable logic controller control programs by neural networks</td>
<td></td>
<td>E09PS56</td>
<td>Integrated Electromechanical Controls Laboratory using Programmable Logic</td>
</tr>
<tr>
<td>E09PS26</td>
<td>A method for improving the robustness of PID control</td>
<td></td>
<td>E09PS57</td>
<td>Voltage sags in industrial systems</td>
</tr>
<tr>
<td>E09PS27</td>
<td>Transformation from Petri Nets Model to Programmable Logic Controller using One-to-One</td>
<td></td>
<td>E09PS58</td>
<td>Accelerated aging of extruded dielectric power cables. I. Control and monitoring methodology</td>
</tr>
<tr>
<td>E09PS28</td>
<td>Design and implementation of PLC-based monitoring control system for induction motor</td>
<td></td>
<td>E09PS59</td>
<td>Automating the rubber compounding process</td>
</tr>
<tr>
<td>E09PS29</td>
<td>Optimization of sensor parameters in programmable logic controller via mixed integer</td>
<td></td>
<td>E09PS60</td>
<td>Small expert systems as intelligent modules of programmable logic controllers</td>
</tr>
<tr>
<td>E09PS30</td>
<td>Automatic transfer switch (ATS) using programmable logic controller (PLC)</td>
<td></td>
<td>E09PS61</td>
<td>A knowledge based system for configuring programmable logic controllers</td>
</tr>
<tr>
<td>E09PS31</td>
<td>Logic code transformation and minimization algorithm for fault diagnostic systems</td>
<td></td>
<td>E09PS62</td>
<td>Emergency shutdown system</td>
</tr>
<tr>
<td>E09PS32</td>
<td></td>
<td></td>
<td>E09PS63</td>
<td>The hardware and software interface of a programmable logic controller to an industrial</td>
</tr>
</tbody>
</table>
E09PS64 Power quality and factory automation
E09PS65 Automation of reciprocating gas engine compressor packages using programmable logic
E09PS66 Design an intelligent programmable logic controller with IPLC
E09PS67 Digital, remote control system for a 2-MW research reactor
E09PS68 Application of programmable logic controllers for pipeline local and remote control
E09PS69 Automatic Railway Station Automation Using PLC
E09PS70 Boiler Automation System Using PLC
E09PS71 Design And Implementation of PLC- Based Monitoring Control System For Induction Motor
E09PS72 Design And Implementation of Power Plant Automation Using PLC
E09PS73 Detection of Gas Leakage and Alarming System Using PLC
E09PS74 Determination of Critical Cable Length for Ferto Resonance
E09PS75 Digital Energy Meter Using GSM Technologies
E09PS76 Distributed Control System Using PLC
E09PS77 Industrial Automation Using PLC
E09PS78 Low Cost PLC Design using Micro Controller
E09PS79 PLC Based Automatic Car Parking System
E09PS80 SCADA based Automation of Power Plant and Distribution System PLC
E09PS81 Unmanned Petrol Pump by Automation Using Microcontroller, PLC
E09PS82 Power generating station automation using PLC with high protection.
E09PS83 Automatic Bottle filling System using PLC for multinational company.
E09PS84 Design and Implementation of Power Plant automation using PLC.
E09PS85 Railway Automation.
E09PS86 Web Based Power Plant Control Using PLC
E09PS87 Decentralized Cooperative Multi-Robot Learning - A Testbed For Secure And Robust Scada Systems
E09PS88 Scada Systems For Substation Automation
E09PS89 Industrial Attendance Supervision Organization Using Infrared Rays Sensors
We at CodeBytes have evolved a unique practical methodology to give a real project experience to the students. CodeBytes with its understanding of the academic requirement and the expertise gained through implementing the projects over last six years offers industry relevant real time projects to the final year students in IT field, which are executed in the simulated development environment of CodeBytes. The availability of essential tools, software and hardware combined with the able guidance gives the learners all the confidence and capabilities required to execute the projects in the industries in which they get employed.

CodeBytes®
80/33, First Floor, Cherran Towers, Near KG Theatre, Arts College Road, Coimbatore - 18

Call: 97915 32226
www.codebytes.webs.com
codebytesprojects@gmail.com
Features:
- Latest 2009 IEEE Projects
- FREE course training with project
- Challenging topics to choose
- Real Time projects from our clients for eligible students*
- Group offer
- Hardware Kit buyback / resale scheme
- Training based on SDLC model
- Reasonable cost
- FREE project documentation (soft copy)
- FREE Hard Copy for the first batch from every college!!

We don’t sell projects....
.....but we enable you to do it.

[Get the real project experience at CodeBytes]

Meet us today, to know the difference.

www.codebytes.webs.com
codebytesprojects@gmail.com

Call : 97915 32226